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Dressed solitonic excitations for the A U T  Hamiltonian 
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$ Instinit fiir Theoretische Physil; Universitiit Hannover, AppelsVasse 2, 30167 Hannover, 
Germany 

Reoeived 15 February 1995 

Abstract. In contrast to the ground stare of the A f R e c k - K e n n e d y - L a k i  (AKET) 
isompic spin-l Hamiltonian its elementary excitntions are not known exactly in general. Based 
on a simple variationd mm we const" approximate excitations in the form of dressed 
hidden domain walls. This allows us to give an improved upper bound for the gap of the AI(LT 
Hamiltonian which is only 1% larger than the best c m n t l y  available numerical result. We 
compare the one- and two-soliton djspenion e w e s  with low-lying excitations for a chain of I6 
sites as given by mth and Sblvm and find excellent agreement. Spin and suing correlations 
are calculated and found to a p e  in leading order with the corresponding correlations for the 
bare kinks. Finally the weight of the string-ordered p m  of the lowest excited state is calculated 
and compared with the exact numerical result. 

Haldane's conjecture [l] about the isotropic antiferromagnetic Heisenberg chain for integer 
spin prompted numerous investigations of spin chains with a disordered singlet ground state 
and a gap in the excitation spectrum (see [2,3] for reviews). A model well understood and 
believed to be in the same universalily class as the isotropic Heisenberg chain is a spin-1 
chain with an isotropic biquadratic nearest-neighbour Hamiltonian [4]. It has the form of a 
sum of spin-2 projectors on neighbouring sites: 

The ground state S2 for this Hamiltonian can be constructed explicitly. It is a valence bond 
state which is annihilated by each of the projectors. For open boundary conditions there 
are four ground states which only differ in their behaviour at the boundaries and can be 
classified into eigenstates of S2 and SL of the boundary spins SN and SI. These states have 
exponentially decaying spin correlations and are separated from the excited states by an 
energy gap. They have hidden order, though, as was pointed out in [SI and further explored 
in [6, 71. 

The energetically lowest-lying excited states come as a triplet of spin-1 excitations at 
k = x. They are not known exactly but have been investigated with the help of the Bijl- 
Feynman single-mode approximation [8]. (For exactly known bound two- and three-particle 
states higher up in the spectrum see [9].) These approximate states also come in triplets: 
SfS2 with (Y = z,rt where St = N - 1 / 2 C n & 6 S ; .  They have the following dispersion 
relation: 

(2) E ( k )  = & (5 + 3cosk). 

This allows for a first upper bound for the gap: A c E(x) = 
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As an alternative approach, convincing evidence was presented that the underlying 
elementary excitations do not have the form of spin waves but are hidden domain walls or 
kinks [lo, 111. Thcy can be written in the form of linear combinations of the differences 
of two states (q and which can be generated from the ground state Q by breaking 
one bond 111, 121. The resulting edge spins of this ‘dangling bond’ add up to S,,,, = 1. 

For the intinite chain the states Q: have the form of domain walls between different 
ground states for the left and right half-infinite chain distinguished by their boundary spins. 
In the case of periodic boundary conditions the special nature of the hidden order allows 
for introducing a single kink by breaking a single bond. Details can be found in [ 11, 121. 
The transitions between the domains being quite abrupt, a spatial smoothing of the domain 
wall should result in an improved approximation for the gap. In the following we quickly 
summarize the steps necessary to achieve this and give some explicit results. 

The strongly correlated valence bond ground state R for periodic boundary conditions 
(S,,, = 0, S;o, = 0) can be put in a factorizing form with the help of a non-local unitary 
transformation [71: 

with a = and b = 1 / d .  This state is normalized for N + 00. 

The approhate  excited states Qi transform in a way which we illustrate for Q;: 

@; = .yQ; = @(I)  * @(2) +@e) *@(U + @(3) * @(4) + @(4) * @(3, (5) 

Here we use the same notation a(’) to denote the state of the full chain as well as the state 
of a part of the chain since there appears no danger of confusion. The broken bond between 
sites n and n + 1 divides the states 1 and 2, and 3 and 4, respectively. Explicitly this means 
for example: 

This state is normalized and orthogonal to the ground state for N + CO. We introduce 
a dressing of this state in the following non-normalized form: 

c wiU be considered as variational parameter. From a physical point of view this state 
smears the domain wall over three lattice sites and also mixes in components which locally 
have additional domain walls. In that respect it is similar to a recent variational ansarz 
of Kennedy [14] which leads to an improved ground state. energy of the antiferromagnetic 
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Heisenberg chain by adding to the states considered in [7] states with additional domain 
walls. The state of equation (7) can also be written in operator form: 

)> (8) - ehs:.l 40) 8 p, 

Substituting 4(') 8 a(') by di) 0 4(j) with i # j one can construct 16 different states 
@ j ) .  Four of these are the four ground states of the valence bond model; the remaining 
12 states are the excited states investigated in the following. 

Upon Fourier transformation one finds the same dispersion relation for all these states: 

4i1.2) = (1 - -i C= (ems; - eks~)  
4a 

11& - 579 + 306 cos k 

6(&-49+30cosk) 
E(k) = 

R =3121 - 2 5 0 8 ~ 0 ~ ( k ) + 9 0 0 ~ 0 ~ ~ ( k )  

CZ = & - 49 + 30 cos k 
6(5+3cosk)  . 

An improved upper bound for the gap A is therefore given by E(k = IT): 

(9) 

= 0.353683 1 . .  .. 1 1 m - 8 8 5  

6 (m - 79) 
E(k = IT) = 

This should be compared with the result of the Bijl-Feynman approximation: A = $ = 
0.370 370.. ., and with the finitesize scaling result from exact diagonalization of chains 
with N up to 16 [ 11, 131, which gives A w 0.350.. ._ For k = H we have c2 w 0.150.. _. 

Noting that E(k = 0) = 1.297 245.. . and E(k = a/2)  = 0.862 35.. . one can see that 
2E(n) < E(O), but E(0)  + E ( n )  < ~ E ( I T / ~ ) .  The two-kink dispersion curve therefore has 
vanishing slope for k = 0 as well as fork = H (in contrast to the Bijlqeynman curve) and 
its two parts join smoothly around k = kc w 0 . 9 5 ~ .  For smaller wavevectors the two-kink 
dispersion relation is given by E2(k) = 2E(n + k/Z). Only for k sufficiently close to n is 
it given by E((k  + x ) / Z )  + E((k - x)/2). 

In figure 1 we compare the dispersion relations for singlekink, two-kink, and threekink 
excitations with numerical results by FAth and SBlyom [ l l ]  for the chain with N = 16 sites 
and periodic boundary conditions and find excellent agreement with their finite-size scaling 
results for the gaps at k = 0 and k = H denoted by asterisks. The single-kink branch enters 
the continuum for k/n = 0.442078.. .. Around this value the numerical results for the 
linite chain deviate visibly from our approximation and from the thermodynamic limit as 
well for which our one- and two-kink approximation should give reliable results. 

We remark that we can obtain an even better upper bound for the gap by treating also 
the parameter b in the ansatz of equation (6) as a variational parameter: this leads to 
E(k = n) = 0.35063.. ., within lo-) of the numerical value. 

The variational states that have been constructed are neither eigenstates of SLI nor of 
SiI. To compare spin and sbing correlations for these. variational solutions with the exact 
results it is necessary to linearly superpose the former solutions to become eigenstates of 
S& and 9,. So far this goal could only be achieved partially. 

As H and SiI commute we can obtain an even better bound by projecting a given 
variational solution on the subspace with given SIoI. Unfortunately the states found in this 
way in general have no simple local form any longer. On the other hand it turns out that 
it is quite simple to construct a variational state for SfOl = 0 following the lines given in 
[ll] but using the variational states. The resulting state, however, is not an eigenstate of 
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Figure 1. Low-lying eigenvalues of the AKLT Hamiltonian with periodic boundary conditions 
for N = 16 sites Qken from [Ill  compared with the variational single-kink dispersion curve as 
given in equation (9) (full curve) and &e Iwo-kink (dashed curve) and three-kink (dasheddotted 
curve) dispwsion cwes derived lrom it. The two- and Weediton a n t i n u  tie above ihese 
curves. The finite-sile scaling results of [I l l  are indicated by asterisk. For comparison we 
also show the single-kink dispersion curve as given in equation (2) based on the Feynman-Biil 
single-mode expansion (doued line). 

got and therefore mixes contributions from several Si, subspaces. Here we only give the 
result after back-transforming it  with U: 

with parameters and dispersion relation as in equation (9). Direct calculation for k = K 
shows that E, SLqL, = 0. 

The ground state Q has complete string order. Numerical results show that the string 
order of the exact low-lying excited states with S,$ = 0 at k = R is only negligibly pcrturbed 
and a description in terms of effective fermions becomes feasible [15, 161. A measure for 

(ssinp) the completeness of the string order of a state Yk is given by the weight wx of the 
string-ordered part of Yk, Upon using the non-normalized stam this quantity can be 
seen to be 
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Upon normalization this gives the weight of the part Wi(0) of the state '$$(c) which has 
perfect string order. Yi(0) is a linear combination of states with antiferomagnetic order 
being diluted by sites with s1 = 0 (spin-zero defects). 

Fork = JZ this gives wf=yg' = 0.9888.. ., which should be compared with the numerical 
result for the exact excited state 0.9866.. . found for N = 14 and periodic boundary 
conditions. 

Finally we want to communicate our results for the string and the spin correlations for 
the state *L,. The string order operator for 01 = x ,  z and i < j is defined as follows 
t71: 

(13) = - 01 in 2% sp s u  
' J  SI e I '  

The unitary operator U transforms spin and string operators into each other: 

u t u p  = spso I '  (14) 
Neglecting terms of the order 0(1/N) one calculates: 

This result is independent from c and coincides with the result for the bare kinks (c = 0) 
to the given order in 1/N. Comparison with numerical results for chains with N < 14 show 
qualitative agreement. Extrapolation for N + 00 was, unfortunately, not possible. 

Similar calculations for the spin correlations give to leading order 

(16) 
for both CY = x and LY = z. Again, in leading order these results agee with the result for 
bare kinks. Comparison with numerical results again shows qualitative agreement. 

Our results confirm the picture given in [ll] and independently in [I21 that the 
elementary excitations of the AKLT Hamiltonian are hidden string order domain walls with 
a spatial extension of a few lattice sites. Numerical results for the string order correlation 
of two-kink states in finite chains [I71 show that they repel each other. This feature already 
goes beyond our simple independent two-soliton ansatz used to determine E&). 
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