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Abstract. In contrast to the ground state of the Affleck-Kennedy-Lieb-Tasaki {AKLT)
isotropic spin-1 Hamiltonian its elementary excitations are not known exactly in general. Based
on a simple variational ansqrz we construct approximate excitations in the form of dressed
hidden domain walls. This allows us to give an improved upper bound for the gap of the AKLT
Hamiltonian which is only 1% larger than the best curently available numerical result. We
compare the one- and two-soliton dispersion curves with low-lying excitations for a chain of 16
sites as given by Fath and S}¥%T and find excellent agreement. Spin and string correlations
are calculated and found to agree in leading order with the comresponding correlations for the
bare kinks. Finally the weight of the string-ordered part of the lowest excited state is calculated
and compared with the exact numerical result.

Haldane’s conjecture [1] about the isotropic antiferromagnetic Heisenberg chain for integer
spin prompted numerous investigations of spin chains with a disordered singlet ground state
and a gap in the excitation spectrum (see [2, 3] for reviews). A model well understood and
believed to be in the same universality class as the isotropic Heisenberg chain is a spin-1
chain with an isotropic biquadratic nearest-neighbour Hamiltonian [4]. It has the form of a
sum of spin-2 projectors on neighbouring sites:

I 1 1
H= 2 (ESP! " Sn-I—l + g (Sn " Sn+1)2 + 5) . (l)

The ground state £2 for this Hamiltonian can be constructed explicitly. It is a valence bond
state which is annihilated by each of the projectors. For open boundary conditions there
are four ground states which only differ in their behaviour at the boundaries and can be
classified into eigenstates of S and $? of the boundary spins Sy and S). These states have
exponentially decaying spin correlations and are separated from the excited states by an
energy gap. They have hidden order, though, as was pointed out in [3] and further explored
in [6, 7).

The energetically lowest-lying excited states come as a triplet of spin-1 excitations at
k = m. They are not known exactly but have been investigated with the help of the Bijl-
Feynman single-mode approximation [8]. (For exactly known bound two- and three-particle
states higher up in the spectrum see [9].) These approximate states also come in triplets:
5¢Q with @ = z,% where Sf = N~Y23 €S2 They have the following dispersion
relation:

E(k) = £ (5+3cosk). 2)
This allows for a first upper bound for the gap: A < E(w) = %g.
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As an alternative approach, convincing evidence was presented that the underlying
elementary excitations do not have the form of spin waves but are hidden domain walls or
kipks {10, 11]. They can be written in the form of linear combinations of the differences
of two states (Q2F and QF_,) which can be generated from the ground state € by breaking
one bond [11, 12]. The resulting edge spins of this ‘dangling bond’ add up to Six = 1.

For the infinite chain the states 2 have the form of domain walls between different
ground states for the left and right half-infinite chain distinguished by their boundary spins.
In the case of periodic boundary conditions the special nature of the hidden order allows
for introducing a single kink by breaking a single bond. Details can be found in [11, 12}
The transitions between the domains being quite abrupt, a spatial smoothing of the domain
wall should result in an improved approximation for the gap. In the following we quickly
summarize the steps necessary to achieve this and give some explicit results.

The strongly correlated valence bond ground state €2 for periodic boundary conditions
(Sior = 0, 8%, = 0) can be put in a factorizing form with the help of a non-local unitary
transformation {71

P=U0= %(q)(n -+ cp(z) — ¢(3) — q)(d-)) (3)
with #V =W ¢V @ .- @¢D andi=1,...,4, and

+a gy
s = | b
0
¢(3/4} = —b 4
TFa

with @ = /273 and b = 1/+/3. This state is normalized for N — 0.
The approximate excited states £22 transform in a way which we illustrate for £2Z:

cpﬁ = UQ; —_ ¢(” ® d)(zl' + (D(ZJ @ ¢;(1) -+ ¢(3) ® ¢(4) + CI)(4) ® 4)(3) (5)

Here we use the same notation ®% to denote the state of the full chain as well as the state
of a part of the chain since there appears no danger of confusion. The broken bond betwecn
sites n and n + 1 divides the states 1 and 2, and 3 and 4, respectively. Explicitly this means
for example:

a a -—a -—a
¢(1)®¢(2)= b le --@1] & ® b R:--® b . (6)
0 0 n 0 n41 O N

This state is normalized and orthogonal to the ground state for N — oo, We introduce
a dressing of this state in the following non-normalized form:

1 [41 = a -
(b = Eq’m o1l o | ®| @ +{ & | o] & ®e®. (D
€ /n ¢ Jan €/ =€ Jnn

¢ will be considered as variational parameter. From a physical point of view this state
smears the domain wall over three lattice sites and also mixes in components which locally
have additional domain walls. In that respect it is similar to a recent variational ansaitz
of Kennedy [14] which leads to an improved ground state energy of the antiferromagnetic
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Heisenberg chain by adding to the states considered in [7] states with additional domain
walls. The state of equation (7) can also be written in operator form:

(.‘2 x s i i ©F
q)fll.z) = (1 _ m (em:S,, _emS,.) (e_ms.fn — emsn-l-l)) o} ® 2 ®)

Substituting ' @ ®@ by &%) @ &) with i # j one can construct 16 different states
@5, Four of these are the four ground states of the valence bond model; the remaining
12 states are the excited states investigated in the following.

Upon Fourier transformation one finds the same dispersion relation for all these states:

11+/R — 579 + 306 cos k

E(k) =
6 (JE — 49+ 30cosk)

R = 3121 — 2508 cos(k) + 900 cos>(k) ¢))

2o ~R —49 4 30cosk

6(5+3cosk)

An improved upper bound for the gap A is therefore given by E(k = m):
11+/6529 — 885
Ek=mn)= 116529 — 885 =0.3536831.... (10)
6 (/8525 - 79)
10

This should be compared with the result of the Bijl-Feynman approximation: A = 5z =
0.370370..., and with the finite-size scaling result from exact diagonalization of chains
with N up to 16 [11, 13), which gives A 2 0.350.... For k = m we have ¢ ~ 0.150....

Noting that E(k = 0) = 1.297245... and E(k = 7 /2) =0.86235... one can see that
2E(m) < E(0), but E{Q}-+ E(m) < 2E(r/2). The two-kink dispersion curve therefore has
vanishing slope for k¥ = 0 as well as for £ =  (in conirast to the Bijl-Feynman curve} and
its two parts join smoothly around k¥ = k. & 0.957. For smaller wavevectors the two-kink
dispersion relation is given by E»(k) = 2E(mw - k/2). Only for k sufficiently close to w is
it given by E((k +m)/2) + E((k — ) /2).

In figure 1 we compare the dispersion relations for single-kink, two-kink, and three-kink
excitations with numerical results by Fath and Sélyom [11] for the chain with ¥ = 16 sites
and periodic boundary conditions and find excellent agreement with their finite-size scaling
results for the gaps at £ = 0 and & = & denoted by asterisks. The single-kink branch enters
the continuum for k/r = 0.442078.... Around this value the numerical results for the
finite chain deviate visibly from our approximation and from the thermodynamic limit as
well for which our one- and two-kink approximation should give reliable results.

‘We remark that we can obtain an even better upper bound for the gap by treating also
the parameter » in the amsatz of equation (6) as a variational parameter: this leads to
E(k =7) =0.35063..., within 10~ of the numerical value.

The variational states that have been constructed are neither eigenstates of S%, nor of
52.. To compare spin and string correlations for these variational solutions with the exact
results it is necessary to linearly superpose the former solutions to become eigenstates of
St and SZ,. So far this goal could only be achieved partiaily.

As H and S2, commute we can obtain an even better bound by projecting a given
variational solution on the subspace with given S. Unfortunately the states found in this
way in general have no simple local form any longer. On the other hand it turns out that
it is quite simple to construct a variational state for S%, = 0 following the lines given in
[11] but using the variational states. The resulting state, however, is not an eigenstate of
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Figure 1. Low-lying eigenvalues of the AKLT Hamiltonian with periodic boundary conditions
for N = 16 sites taken from [11] compared with the variational single-kink dispersion curve as
given in equation (9) (full curve) and the two-kink (dashed curve) and three-kink (dashed—dotted
curve) dispersion carves derived from it. The two- and three-soliton continua lie above these
curves. The finite-size scaling results of [11] are indicated by asterisks. For comparison we
also show the single-kink dispersion curve as given in equation (2) based on the Feynman-Bijl
single-mode expansion (dotted line).

52, and therefore mixes contributions from several S2, subspaces. Here we only give the
result after back-transforming it with U

1 . € e imge 7 §*
= — ;e"‘"sj (1 i R e"’5~+ls§+,2)) Q (1)
with parameters and dispersion relation as in equation (9). Direct calculation for k& =
shows that 3~ SEWi =0

The ground state 2 has complete string order. Numerical resuits show that the string
order of the exact low-lying excited states with S3, = 0 at k = 7 is only negligibly perturbed
and a description in terms of effective fermions becomes feasibie [15, 16]. A measure for
the completeness of the string order of a state Wy is given by the weight w™"® of the
string-ordered part of W,. Upon using the non-normalized states Wi{c) this quantity can be
seen to be

(stoing) ___ (Wf(O)IWf(O))

gL L LEA N, AN 12
Y= o) (12)



Dressed solitonic excitations for the AKLT Hamiltonian 5087

Upon normalization this gives the weight of the part WE(0) of the state Wi(c) which has
perfect string order. Wi{0) is a linear combination of states with antiferromagnetic order
being diluted by sites with s, = 0 (spin-zero defects).

For k = x this gives wéﬂ“g) = 0.9888. .., which should be compared with the numerical
result for the exact excited state 0.9866... found for N = 14 and periodic boundary
conditions.

Finally we want to communicate our results for the string and the spin correlations for
the state W7__. The string order operator ¢, for @ = x, z and i < j is defined as follows

[73:

o8 = —Syeir Tinin 5 52, (13)
The unitary operator U transforms spin and string operators into each other:
UleRU = 552, (14}
Neglecting terms of the order O(1/N) one calculates:
{Wiloy 1WE) 2 4 2|n — ml)
=k S+ -1 =8, 11— O /N
(WE| ) 3 %mnt g ( n) v +O(1/N} "
(Wi loma | VE) 2 4
— P — —(1-38 1/N).
= (5 0w+ 50— 8w ) T 00/

This resalt is independent from ¢ and coincides with the result for the bare kinks (¢ == 0)
to the given order in 1/N. Comparison with numerical results for chains with N < 14 show
qualitative agreement. Exirapolation for N — oo was, unfortunately, not possible.

Similar calculations for the spin correlations give to leading order

(WEISHSRIWE) _ (g 4 el gy )( (2|n—m[))
RTITTIR 3 Omn + 5 (C1/3777(1 —dpa) | [ 1+ 0O —— ) | + OU/N)
(16)

for both & = x and @ = z. Again, in leading order these results agree with the result for
bare kinks. Comparison with numerical results again shows qualitative agreement.

Our results confirm the picture given in [11] and independently in [12] that the
elementary excitations of the AKLT Hamiltonian are hidden string order domain walls with
a spatial extension of a few lattice sites, Numerical results for the string order comelation
of two-kink states in finite chains [17] show that they repel each other. This feature already
goes beyond our simple independent two-soliton ansatz used to determine Ej(k).
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